Vitamin turns into `gymnast’ inside our body
London: Scientists have captured first full image of vitamin B12 – which forms a part of our nutritious diet like all other vitamins and minerals – in action.
Researchers have created the first full 3-D images of Vitamin B12 and its partner molecules twisting and contorting as part of a crucial reaction called methyltransfer.
That reaction is vital both in the cells of the human body and, in a slightly different way, in the cells of bacteria that consume carbon dioxide and carbon monoxide.
That includes bacteria that live in the guts of humans, cows and other animals, and help with digestion.
The new research was done using Vitamin B12 complexes from another type of carbon dioxide-munching bacteria found in the murky bottoms of ponds.
The 3-D images produced by the team show for the first time the intricate molecular juggling needed for B12 to serve its biologically essential function.
They reveal a multi-stage process involving what the researchers call an elaborate protein framework – a surprisingly complicated mechanism for such a critical reaction.
This transfer reaction is important to understand because of its importance to human health. It also has potential implications for the development of new fuels that might become alternative renewable energy sources.
Without this transfer of single carbon units involving B12, and its partner Vitamin B9 (otherwise known as folic acid), heart disease and birth defects might be far more common.
Similarly, the bacteria that rely on this reaction would be unable to consume carbon dioxide or carbon monoxide to stay alive – and to remove gas from our guts or our atmosphere. So it’s important on many levels.
In such bacteria, called anaerobes, the reaction is part of a larger process called the Wood-Ljungdahl pathway.
It’s what enables the organisms to live off of carbon monoxide, a gas that is toxic to other living things, and carbon dioxide, which is a greenhouse gas directly linked to climate change. Ragsdale notes that industry is currently looking at harnessing the Wood-Ljungdahl pathway to help generate liquid fuels and chemicals.
In the images created by the team, the scientists show how the complex of molecules contorts into multiple conformations – first to activate, then to protect, and then to perform catalysis on the B12 molecule.
They had isolated the complex from Moorella thermoacetica bacteria, which are used as models for studying this type of reaction.
The images were produced by aiming intense beams of X-rays at crystallized forms of the protein complex and painstakingly determining the position of every atom inside.
“This paper provides an understanding of the remarkable conformational movements that occur during one of the key steps in this microbial process, the step that involves the generation of the first in a series of organometallic intermediates that lead to the production of the key metabolic intermediate, acetyl-CoA,” the authors noted.
“We expected that this methyl-handoff between B vitamins must involve some type of conformational change, but the dramatic rearrangements that we have observed surprised even us,” Senior author Catherine L. Drennan from MIT and the Howard Hughes Medical Institute, who received her Ph.D. at the U-M Medical School, added.